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Abstract

Combinatorial Watermarking Signal Authentication can help establish trust in a GNSS signals. In Combinatorial Water-
marking, the GNSS provider elects to invert a subset of spreading code chips secretly and then later distribute those perturbations
to receivers. The receivers can use statistics of the signal to make determinations of the signal authenticity. Previous work
demonstrated how to design a Combinatorial Watermarking scheme and derive the distributions of receiver statistics to ensure
small probabilities of missed detection and false alarm under assuming an adversary does not attempt to estimate the watermarked
chips and replay. In this work, we extend the analysis of Combinatorial Watermarking to adversaries capable of engaging in
Security Code Estimation and Replay (“SCER”) attacks. We derive the distributions of our statistics under these models and
assemble a collection of statistics needed to defend against SCER-capable adversaries. Provided a bound on the estimation
capability of the SCER-capable adversary, one can use this work to design a Combinatorial Watermarking scheme that meets
security requirements.

I. INTRODUCTION
GNSS remains vulnerable to spoofing attacks. For civilian users, watermarking the signal could provide a pathway to
utilize cryptography for receivers to determine a signal’s authenticity [Scott, 2003]. In Watermarking Signal Authentica-
tion, the spreading code of the GNSS signal is watermarked cryptographically. Several proposals and studies are under-
way [Anderson et al., 2017, Hinks et al., 2021, O’Hanlon et al., 2022]. Watermarking Signal Authentication, together with
Navigation Message Authentication, could allow receivers to assert authenticity of the entire GNSS signal.

The security of Watermarking Signal Authentication is limited with adversaries capable of estimating and replaying the water-
marked spreading code. These attacks are called Security Code Estimation and Replay (“SCER”) attacks [Humphreys, 2013,
Caparra and Curran, 2018, O’Driscoll et al., 2022]. These attacks are the most sophisticated and complicated attacks against
Watermarking Signal Authentication, but they are nevertheless possible with sophisticated technical equipment and know how.

In Combinatorial Watermarking, the GNSS provider elects to pseudorandomly invert a fixed-number combination of chips within
each spreading code. Combinatorial watermarking presents several design advantages, including deriving the distributions of
receiver-observable statistics in the presence of spoofing. In this work, we examine the security of watermarks under attack by
SCER-capable adversaries.

1. Combinatorial Watermarking
In this section, we provide an introduction to Combinatorial Watermarking. We refer to our previous work for additional details,
including the mathematical and cryptographic derivations [Anderson et al., 2023b]. For the reader’s convenience, Table 1
includes the variable notation definitions, adapted from [Anderson et al., 2024].

With a combinatorial watermark, the provider selects a combination of r chips among the n total chips. The construction
from [Anderson et al., 2023b] exploits the properties of cryptographic functions to ensure several necessary security properties.
Pertinent to this work, the properties ensure that the chips selection is unbiased and there is no efficient algorithm to predict
which chips are inverted or any underlying structure among chips selected.

In [Anderson et al., 2023b], we construct a radio observable and bound the probabilities of missed detection and false alarm.
The construction of the watermark and the radio observable lend a way to compute the distribution under spoofing conditions
with certain adversarial modelling assumptions. Of the most significant consequence, [Anderson et al., 2023b] assumed that
the adversary was not listening to the authentic signal to directly estimate the watermark. Rather, the adversary could only make
an exhaustive guess. In this work, we allow the adversary to engage in an SCER attack [Humphreys, 2013].

In the non-SCER case, with our derivation of g to Equation (1) and our judicious selection of K in Equation (2), we arrive at
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Table 1: A Table defining the variable notation for Combinatorial Watermarking, adapted from [Anderson et al., 2024].

Variable Definition
n The number of chips in a single watermark. For example, with SBAS,

n = 1023.
r The number of chips inverted in a single watermark. r can vary to

meet specific design concerns, but in [Anderson et al., 2024], we suggest
r = 15.

s The number of chips an adversary may elect to invert when attempting
to spoof a receiver. s may be any integer from 0 to n/2.

H(n, r, s) The Hypergeometric Distribution. An adversary engaged in a spoofing
attack generating false signals with s randomly selected chips inverted
will guess h ∼ H(n, r, s) correctly for any one watermark.

R The spreading code replica. Rw refers to the watermarked replica. R−
refers to the reversed replica, which is convolved with the signal to enact
correlation.

H The number of individual watermarks over R.
F The sampling rate of the radio measuring the receiver observable used

to determine the authenticity of a watermarked signal. For SBAS, this
should be greater than 2 MHz.

T The coherent integration of a single watermark measurement. In this
work, we use T = 1ms.

P The power of the signal within a receiver radio immediately proceeding
correlation.

σ2 The noise power within a receiver radio immediately proceeding corre-
lation.

N The normal distribution.
S The signal measured over time T at sampling rate F immediately pro-

ceeding correlation.
Y, Y The receiver observable statistic and its distribution, respectively.

y = g(h | n, r, s) The linear function g transforms the support of h ∼ H into the support
of the radio observable Y .

Equations (3) and (4) for the distribution Y under the authentic and spoofing hypotheses.

y = g(h, n, r) = 1
n

(2h − r) (1)

K = 1
2

1√
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1
||R||1
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1
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(3)
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H
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σ2
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FT
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PDFY|spoof, H(y) = PDFH(n,r,s)(g−1(y, n, r))∗H ∗ PDFN
(

0, r
n

σ2
P

1
F T H

)(y) (5)

From the distributions from Equation (3) and (4) (the PDF of Equation (4) is Equation (5)), one can select a boundary on Y and
the scheme parameters to achieve desired probabilities of missed detection and false alarm.

2. A Potential Scheme
In [Anderson et al., 2024], we use the derivations from [Anderson et al., 2023b] to create a scheme that meets reasonable design
requirements. [Anderson et al., 2024] suggests that the provider elect to flip r = 15 chips among the n = 1023 for L1, and that a
receiver observe 6000 individual watermarks over 6 seconds. The 6 second timeline comes from a potential TESLA distribution
strategy via WAAS [Anderson et al., 2023a]. The r = 15 selection fulfills a 10−9 missed detection and false alarm requirement
for a worst case 2 MHz receiver operating at a C

N0
= 30. These conditions are intentionally worst case to accommodate a wide
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Figure 1: A conceptual diagram of an adapted SCER attack. The adversary attempts to observe the watermark directly in the signal, and then
replay a watermarked signal to spoof a receiver. The thought bubble of the adversary portrays the adversary attempting to use its measurements
of the true signal to construct a single watermark likely to spoof without detection by the receiver. The top row of boxes represents a collection
of inverted-chip likelihoods among a single watermarked spreading code. The varying hues of red represent the soft information provided
by likelihood (i.e., the darker the red, the higher the inverted likelihood). The bottom row of boxes represents the watermark decision by the
adversary. The adversary can elect not to invert all or invert additional chips.

breadth of receivers and operating conditions. As a case study, we will extend our adversarial model and attack this scheme and
predict requirements of the SCER adversary to predictably spoof a receiver.

3. Extending Adversarial Models
In [Anderson et al., 2023b, Anderson et al., 2024], we assumed that the adversary did not listen to the signal to estimate the
watermark and replay a signal with the observed watermark. Rather, the adversary made a random guess watermark and
transmitted a spoofed signal. In this work, we now examine an adversary attempting to observe the watermark and replay a
signal.

In the literature, attacks that listen for security chips and replay are called SCER attacks [Humphreys, 2013]. Figure 1 provides
a conceptual diagram of an SCER attack for our combinatorial-watermarking context. Among GNSS spoofing adversaries,
SCER-capable adversaries are considerably more sophisticated and complicated, and succeeding is considerably more difficult.
In some contexts, schemes that prohibit all but SCER-capable adversaries are sufficient spoofing deterrents. However, once
cryptography is incorporated into GNSS signals, GNSS signals will still remain vulnerable to SCER attacks.

SCER attacks are difficult for multiple reasons. One reason is that the GNSS signal is below the thermal noise floor, and estimating
security chips requires sophisticated (and likely arduous) radio equipment (e.g., high-gain antennae). A second reason is that
the adversary must transport the estimate the security chips to a transmitting antennae within a sufficiently short time as to
avoid detection my the receiver’s onboard clock. A third reason is that the cryptographic construction limits the effectiveness
of advanced decision algorithms beyond exhaustive search among an enormous search space. Like with [Humphreys, 2013],
we will assume that our adversary has access to advanced radio equipment, has no delay among its observation antenna,
the watermark decision-making algorithm (though a practical computer must be capable of computing the decision), and the
replaying antenna.

4. Chip Estimating Model
Under the standard σ2-noise-power AWGN assumption for the Binary Phase Shift Key (“BPSK”) constellation, the constellation
points are separated by 2

√
P , distributed normally with standard deviation σ, and 0 is halfway between them, as in Figure 2.

Without loss of generality, lets suppose that a non-inverted chip center at
√

P and an inverted chip will center at −
√

P . This
is practically achieved by wiping off the spreading code by element-wise multiplying the signal S by the replica R. The
chip-estimating adversary must select a decision boundary. Halfway would be a good choice assuming a uniform prior between
inverted and non-inverted. However, that will never be the case for a watermarked signal because the number of watermarked
chips must be less than the number of non-watermarked chips so that receivers can track the signal. Given a boundary α, the
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Figure 2: A conceptual figure of the chip estimation model for a single chip after element-wise multiplying my the unwatermarked replica.
For the non-watermarked chip hypothesis, the constellation point will be 1. For the watermarked chip hypothesis, the constellation point will
be -1. The diagram includes the probability density functions for an example SNR of 3dB. The adversary may elect a decision boundary α
(e.g., a Maximum Likelihood or Maximum A Posterior Decision). The probabilities of errors are labeled, given the decision boundary and
noise model.

probabilities of error pe|r and pe|¬r given whether the chip is inverted or not inverted, respectively, will be the following.

pe|r =
∫ α

−∞
PDFN (

√
P ,σ)(x)dx (6)

pe|¬r =
∫ ∞

α

PDFN (−
√

P ,σ)(x)dx (7)

II. THE HARD DECISION ADVERSARY
To spoof, an adversary will have have access to a collection of measurements over the spreading code. Given the cryptographic
construction of the watermark, the only structure present in the watermark is that it is composed of exactly r chips. An optimal
maximum likelihood detector would evaluate the likelihood of its measurement among all the

(
n
r

)
hypotheses. In this imagined

detector, the number of hypotheses is too enormous for any practical detector, following the standard cryptographic security
approach of limiting attacks to brute force on an enormous search space. This section discusses an initial decision simplification
similar to an error correction code decoder that ignores soft information (i.e., a hard decision decoder).

For the hard decision adversary, lets suppose that the adversary uses a hard decision on each chip, ignoring potentially useful
likelihood information from the measurements. The adversary will consider whether each chip is inverted independently without
knowledge of the r structure of the watermark (except with its election of α, which can account for r). The adversary will make
a hard decision without regard to other measurements of the spreading code. For a particular chip, suppose that the probability
of error are pe|r and pe|¬r given whether the chip is inverted or not inverted, respectively. Whichever chips it observes are
inverted, it will invert in its spoof signal, even if the adversary flips more or less than the actual known number (e.g., r = 15).

For a moment, lets suppose the receiver samples once per chip, the adversary outputs unity power, and there is no noise. The
adversary measures a chip i over a watermark spreading code, and makes its decision. From the n decisions, the adversary
forms a replica Sspoof ∈ {−1, 1}n, and after the TESLA distribution, the receiver forms R, Rw ∈ {−1, 1}. We compute the
following valid convolutions.

br ∼ B(r, 1 − pe|r) (8)
b¬r ∼ B(n − r, pe|¬r) (9)

Rw
− ∗ Sspoof = n − 2r + 2br − 2b¬r (10)

R− ∗ Sspoof = n − 2br − 2b¬r (11)

For Equation (10), suppose that Sspoof = R, the convolution within (i.e., with Rw would be n − 2r, which is the case where
the spoofer broadcasts the original spreading code without any attempt to incorporate the watermark. However, according to
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B(r, 1−pe|r), the adversary will measure watermarked chips and broadcast them correctly increasing Rw∗S. Simultaneously, the
adversary will incorrectly invert a non-watermark chips according to B(n − r, pe|¬r) and broadcast them incorrectly, decreasing
Rw ∗ S. Equation (10) follows the addition and subtraction of two binomial distributions because each of the component chips
are measured independently. For Equation (11), suppose that Sspoof = R, the convolution within would be n. Each watermarked
chip the adversary measures correctly will subtract to the convolution and each non-watermarked chip the adversary measures
incorrectly will subtract from the convolution. Equation (11) again follows from the independently-measured chips. We can
relax the unity power assumption by multiplying each equation by

√
P . And if we assume that the receiver evenly samples at

F over spreading code time T , we can adjust each equation by multiplying by F T
n .

In [Anderson et al., 2023b], we suggest the filter Rw − R (with an additional constant gain K from Table 1) and derive that the
distribution in the non-SCER case of the statistic in spoofing conditions is the hypergeometric distribution. In the SCER case,
repeating this argument, we show in Section II.1 that the distribution is a binomial distribution (rather than a hypergeometric
distribution). This follows from subtracting Equations (10) and (11), where the b¬r will cancel out.

The statistic Rw − R is mostly 0, except where the chips are inverted, meaning the statistic only looks at the data where the
watermark should be present and ignores the rest of the spreading code. The adversary could set α to sensitively invert more
chips in its spoofed signal; therefore, the adversary could sacrifice some of the receivers tracking ability in favor of ensuring the
adversary identifies the inverted chips. This motivates the need for a two statistics to detect spoofing.

1. A Filter Set
From Equations (10) and (11) we suggest two filters of the forms of Equations (12) and (13). The first filter is the subtraction
filter from previous work, and the second is the sum. This symmetric pair poses several advantages related to analysis by
separating the two binomial distributions. That separation makes following mathematics derivations easier and symmetric,
provides an intuitive interpretation, and constrains the adversary’s election over α.

(Rw − R) ∗ Sspoof = −2r + 4br (12)
(Rw + R) ∗ Sspoof = 2(n − r) − 4b¬r (13)

The statistic of Equation (12) measures how well the adversary can predict where the chip inversions exist. The statistic of
Equation (13) measures how well the receiver will tracked the spoofed signal. When we judicious pick the following gains for
these filters, the distribution of the statistics is simplified and easier to intuitively understand.

k∆ = 1
||Rw − R||1

1√
P

= 1
2r

n

FT

1√
P

(14)

kΣ = 1
||Rw + R||1

1√
P

= 1
2(n − r)

n

FT

1√
P

(15)

Finally, the final filters are defined with Equations (16) and (17) and diagrammed with Figure 3.

Y∆ = k∆ · R∆ = k∆ · (Rw − R) (16)
YΣ = kΣ · RΣ = kΣ · (Rw + R) (17)

To compute the distributions Y spoof
∆ and Y spoof

Σ for the statistics Y∆ and YΣ under spoofing conditions, respectively, we could
take a direct computational approach via convolution, like in [Anderson et al., 2023b]. However, the adversary model is a group
of adversaries with varying observation capability (via pe|r and pe|¬r). Therefore, for this work, we think that examining trends
in the statistic expectation over varying adversary error is more useful.

We note that from several authentication designs, the receiver will be looking at multiple watermarks [Air Force Research Laboratory, 2019,
Anderson et al., 2024]. For this work, we adopt the 6-second watermark observation window from [Anderson et al., 2024];
therefore, the receiver will look at the average of 6000 individual Y∆ and YΣ, handily allowing us to apply the Central Limit
Theorem to our results below.
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Figure 3: Diagram of a radio that checks the watermark for authentication. The bottom includes the standard tracking loop. From a converged
and tracking tracking loop, I base band samples are stored in memory to await the cryptographic seed that determines the watermark. After
the watermark seed distribution, the I base band samples are processed through the R∆ and RΣ filters. The diagram uses I base band samples
assuming the C/A signal; other samples would be required depending on the signal design.

2. Deriving Mean and Variance of the Filter Set
From Section II.1, we now add AWGN to each of the statistics. Over a single spreading code with a total number of samples
FT , the noise added to a single Y∆ and YΣ is the following.

N ∼ N (0, σ2) (18)

We now derive the expectations and variances of the two output filter statistics under authentic and spoofing conditions. The
signal is S =

√
PRi + Ni, where R is Rw in the authentic case, and R is the SCER-estimated Rspoof with the chip estimation

errors are pe|r and pe|¬r. To compute the authentic distributions, one can ignore the binomial distributions entirely and repeat
the below. But to avoid unnecessary math, we note that we can use our derivations below and simply set pe|r = pe|¬r = 0 for
the authentic case. First, we derive the expectation for Y∆ with Equations (19) and (20).

E
[
Y spoof

∆

]
= E

[√
P · k∆ · (Rw

− − R−) ∗ Rspoof + k∆ · (Rw
− − R−) ∗ N

]
=

√
P · k∆ · E

[
(Rw

− − R−) ∗ Rspoof]
=

√
P · 1

2r

n

FT

1√
P

· E
[
(Rw

− − R−) ∗ Rspoof]
= 1

2r
· E
[ n

FT
· (Rw

− − R−) ∗ Rspoof
]

= 1
2r

· E
[
−2r + 4B(r, 1 − pe|r)

]
= 1

2r
·
(
−2r + 4r(1 − pe|r)

)
= −1 + 2(1 − pe|r)

E
[
Y spoof

∆

]
= 1 − 2pe|r (19)

E
[
Yauth

∆
]

= 1 (20)
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Next, we derive the expectation for YΣ with Equations (21) and (22).

E
[
Y spoof

Σ

]
= E

[√
P · kΣ · (Rw

− + R−) ∗ Rspoof + kΣ · (Rw
− + R−) ∗ N

]
=

√
P · kΣ · E

[
(Rw

− + R−) ∗ Rspoof]
=

√
P · 1

2(n − r)
n

FT

1√
P

· E
[
(Rw

− + R−) ∗ Rspoof]
= 1

2(n − r) · E
[ n

FT
· (Rw

− + R−) ∗ Rspoof
]

= 1
2(n − r) · E

[
2(n − r) − 4B(n − r, pe|¬r)

]
= 1

2(n − r) ·
(
2(n − r) − 4(n − r)pe|¬r

)
E
[
Y spoof

Σ

]
= 1 − 2pe|¬r (21)

E
[
Yauth

Σ
]

= 1 (22)

This formulation poses the convenience that we can directly connect the expectation of the statistics to the efficacy of the
adversaries radio equipment. pe|r and pe|¬r are constrained over α. In Appendix A, we derive the level sets over α to connect
them conveniently to the adversaries estimation SNR via Equation (23). In Equation (23), the SNR is the SNR of the SCER
adversary, which is a function of the adversary’s radio equipment.

erf−1(E [YΣ]) + erf−1(E [Y∆]) =
√

2SNRSCER (23)

Next, we derive the corresponding variances.

V
[
Y spoof

Σ

]
= V
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P · kΣ · (Rw

− + R−) ∗ Rspoof + kΣ · (Rw
− + R−) ∗ N

]
= V

[√
P · kΣ · (Rw

− + R−) ∗ Rspoof
]

+ V
[
kΣ · (Rw

− + R−) ∗ N
]

= V
[√

P · 1
2(n − r)

n

FT

1√
P

· (Rw
− + R−) ∗ Rspoof

]
+ k2

Σ · ||Rw + R||2 · V [N ]

= 1
4(n − r)2V

[ n

FT
· (Rw

− + R−) ∗ Rspoof
]

+ 1
||Rw + R||21

1
P

· ||Rw + R||2 · σ2

= 1
4(n − r)2V

[
2(n − r) − 4B(n − r, pe|¬r)

]
+ ||Rw + R||2

||Rw + R||21
· σ2

P

= 1
4(n − r)2V

[
4B(n − r, pe|¬r)

]
+ 1

(n − r)
n

FT

σ2

P

= 4
(n − r)2 (n − r)pe|¬r(1 − pe|¬r) + 1

(n − r)
n

FT

σ2

P

V
[
Y spoof

Σ

]
= 4

(n − r)pe|¬r(1 − pe|¬r) + 1
(n − r)

n

FT

σ2

P
(24)

V
[
Yauth

Σ
]

= 1
(n − r)

n

FT

σ2

P
(25)
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V
[
Y spoof

∆

]
= V

[√
P · k∆ · (Rw

− − R−) ∗ Rspoof + k∆ · (Rw
− − R−) ∗ N
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]
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P

· (Rw
− − R−) ∗ Rspoof

]
+ k2
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[
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· σ2

P
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4B(r, 1 − pe|r)
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r

n
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P

= 4
r2 rpe|¬r(1 − pe|r) + 1

r

n

FT
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P
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[
Y spoof

∆
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= 4

r
pe|r(1 − pe|r) + 1

r

n

FT

σ2

P
(26)

V
[
Yauth

∆
]

= 1
r

n

FT

σ2

P
(27)

To apply to a receiver examining the average of more than one of these statistics, provided the number is large (e.g., 6000
in [Anderson et al., 2024]), we can apply the Central Limit Theorem. Suppose the receiver is averaging among H = 6000
statistics, then the expectation value would not change, but the variance would be 1/H the variance derived above.

3. Adversarial Spoofing Efficacy
Now that we have derived the mean and variance of the filter distribution under authentic and spoofing conditions (as a function
of the adversaries chip estimation error probability) in Section II.2, in this section, we discuss the receiver decision problem.
First, we discuss an intuitive example, and then we discuss design implications.

In Figure 4, we conceptually connect the adversary’s decision for α to the sum and difference statistics. On the left, we have
the security code estimation model with a decision boundary α = −0.75

√
P selected by the adversary (as an example for

intuition). The decision boundary α directly relates to the prior probability that a chip is flipped. However, without the inclusion
of RΣ filter, the adversary could adjust α to better spoof R∆ without detection. Therefore, we now consider α to be a hyper
parameter for which the security scheme must account all α. On the right, we have the 1-sigma confidence interval for 1 single
1ms watermark with at an SNR of 0dB. The green is probability distribution under authentic conditions, and red for spoofing
conditions, from the derivations of Section II.2. The dashed line a trajectory defined by Equation (23). As the adversary
changes their selection α, the red ellipse traverses the dashed trajectory. As the SCER SNR increases, the spoofing probability
distribution trajectory moves closer to intersecting the authentic case, and vice versa.

Figure 4 is meant to provide an intuitive visual on the dynamics of how α and Y∆ and YΣ relate. When the receiver applies
the Central Limit Theorem over the observation of 1000s of watermarks, the ellipses will shrink substantially (e.g., a factor of√

6000). Ultimately, as the SCER adversary’s pe|r → 0 and pe|¬r → 0 with better radio and computational equipment, the
adversary will be able to approach perfectly estimating and replaying the watermark. The combination of the Central Limit
Theorem distribution narrowing, and knowledge that a better and better SCER adversary could exist, motivates exclusively
designing based on the expectation value (and ignore the spread of the distribution). Therefore, we now provide Figure 5 based
on the SNR-level sets computed via Equation (23).

From a mathematical concise point of view, the upper tail distributions and other effects (such as advantages from Section III)
would be better accounted for by adjusting the adversaries actual SNR. For instance, rather than computing the false-alarm
and missed-detection probabilities from integration of the repeatedly-convolved distributions of a receiver-decided decision
boundary on Y∆, YΣ, one could compute the dB-width of sigma, adjust the adversary’s SNR, and continue design with the
formulations of this section. To design a scheme, similar to [Anderson et al., 2024], it is now the problem of selecting n and r
under an SCER model (i.e., how big of a dish can the SCER-capable adversary use yielding a specific SNR) that yields acceptable
missed detection probabilities. However, it is possible to consider the distribution tails (rather than just the expectation) via
repeated convolution of the the binomial distributions.

Efficacy of receiver-decisions on the Y∆, YΣ can be evaluated integrating over the joint decision space of Figure 5. Or with the
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Figure 4: A conceptual figure that relates the adversary’s choice of α to the probability distribution of Y∆ and YΣ, as explained in Section II.3.
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Figure 5: The hard-decision expectation trajectory (along α) for varying levels of SNR.
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SNR adjusted by a 3-sigma dB width or with other adjustments from Section III. An interesting consequence is a suggestion to
use Equation (23) as the decision boundary to have more favorable probability of missed detection and false alarms compared
to a linear decision boundary. Note that as YΣ decreases, the receivers ability to track the signal rapidly decreases, informing a
reasonable decision area over Y∆, YΣ.

III. SOFT DECISION SCER
Whereas the previous section considered a hard-decision adversary, in this section we consider a soft-decision adversary that
beats the performance of the hard-decision adversary. The hard-decision adversary poses a scheme where the adversary spoofing
distributions can be computed for the purpose of design. However, in this section, we find a better adversary, but we are only
able to show its advantage via Monte Carlo simulation (without knowledge of a concise pathway to repeat the distribution
derivations).

In the hard-decision adversary from Section II.3, the adversary make a hard decision on the security code estimation problem.
This ignores potentially useful soft-information, for instance, with the measurement likelihood from the BPSK model. Moreover,
the hard-decision adversary employs a constant chip power. We propose the following soft-decision adversary without any claim
about whether this adversary is the best obtainable. With our soft-decision adversary, the adversary will set the chip power to
be proportional to the hypothesis likelihood ratio.

Pi ∝
{

p(r) if SCER adversary does not invert chip i

p(¬r) if SCER adversary does invert chip i
(28)

Our choice for Pi is simply a judicious, first-guess choice, inspired by [O’Driscoll et al., 2022], that serves our intuitive purpose.
When the adversary is very confident that a chip is inverted, it will place more power on the particular chip (and the same with a
chip highly believed to be not inverted). When the adversary is not confident that a chip is inverted or not inverted, the adversary
places less power on that particular chip. For our adversary, we re normalize the signal so that it contains the same aggregate
average power over the entire spreading; hence our use of ∝ for Equation (28). This accounts for tracking loop automated gain
control and establishes a fair comparison in the Y∆ and YΣ space. We tried a couple of other functions that ensure more power
on more confidence measurements (e.g., having Pi be a function of the likelihood ratio) with varying advantage.

Like with the order of Section II.3, we will first provide a Monte Carlo experiment for the purpose of intuition, and then a second
experiment for design implication. Figure 6 provides the result of Monte Carlo simulation of the soft decision adversary against
the hard decision adversary. The dashed line is where the statistic expectation for the hard-decision adversary. The distributions
provided are for the aggregation of H = 6000 watermarks. The green is the 3σ authentic distribution ellipse, and the red is the
100 spoofing Monte Carlo trials. The soft-decision advantage is demonstrated by the spoofing ellipse being to the right of the
hard-decision trajectory line.

In a typical scenario, the adversary and receiver observe different SNRs for the GNSS signal because the adversary is likely
using a better antennae. The actual spoofing distribution must account for both variances. In Figure 7 does not distributions of
Y; rather, they are distributions of E[Y] under the central limit theorem. Figure 7 shows the trend of the expectations when the
adversary elects different α, which affects whether r or ¬r election applies. The trajectories follow the general trend, except
that the soft-decision is slightly beating the hard-decision.

1. Better SCER Adversaries and Design Implications
At the time of this work, we do not yet observe a pathway to mathematically derive the advantage for the soft-decision adversary,
to find the best soft-decision adversary, and bound the advantage of any soft decision adversary. Given the convenience of
the mathematically concise derivations for the hard-decision adversary, and the conventions of error-correction code, it is
likely appropriate to attempt to find a soft-information advantage bound or correction for use in designing a system with the
hard-decision derivations. For instance, suppose one could show that a soft-decision adversary performs no better than a
hard-decision adversary with x more SNR dB. Then one could design using the hard decision formulae with a simple correction.

Because an adversary could continually achieve a better radio for the security code estimation, the GNSS designer should focus
on ensuring that the system design requires an antennae that is reasonable arduous on the spoofer and easy for someone in
the area to detect. For instance, one could design the system to require a large dish antennae that should be likely visible in
a protection area (e.g., in the vicinity of an airport). Noting that the r = 15 design from [Anderson et al., 2024], was created
before this work, we can derive the gain required to spoof a receiver. In [Anderson et al., 2024], we suggested a decision
boundary of Y spoof

∆ > 0.5 for 10−9 missed-detection and false-alarm rates for non-SCER adversaries. To spoof a receiver on
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Figure 6: Monte Carlo Experiment showing the advantage of our Soft-decision Adversary. The adversary is this figure chose α = 0. For the
hard-decision Adversary, the expectation will be along the Equation (23) trajectory (dashed). Monte Carlo simulation demonstrates a small
advantage by having the power of each chip be a function of the confidence of the chip estimation.

Figure 7: A diagram generated with Monte Carlo simulation that shows the trend of the expectations of Y∆ and YΣ under spoofing conditions
with the soft-decision adversary of Section III with varying α. The soft-decision ellipses are the 3σ Central Limit Theorem confidence ellipses
of where the expectation should be. For differing SCER SNRs (only 0dB depicted), the soft-decision adversary poses a small advantage over
the hard-decision trajectory line. In the case of this figure, an SCER adversary would need to have an antennae of about 10 dB gain to achieve
this performance. Note that the receiver will lose the ability to track the signal when YΣ decreases.
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expectation, the adversary would need an antennae array or a high-gain antennae until the spoofing ellipses from Figure 7 cross
past the receiver’s decision boundary (e.g., Y spoof

∆ , Y spoof
Σ > 0.5).

Deriving a rigorous answer to the advantage of a soft-decision adversary poses a difficult challenge for both deriving an answer
and defining a model. For instance, in the model of this work, and adversary could put an enormous power on a single chip (and
zero out the other chips). Among the entire spreading code measurements, suppose the adversary only placed power on two
chips: the one with the highest measured likelihood of being inverted and the one with the highest measured likelihood of not
being inverted. It is very likely that these two measurements (e.g., among the r and n − r) are correct. With a perfectly tracking
receiver, the adversary could spoof Y∆ and YΣ by placing max power on those two chips. However, this represents a degenerate
case, motivating a more sophisticated receiver and spoofing radio models (e.g., where the power of this chips are saturated in the
2-chip power spoof). As the model becomes more complicated and realistic, it is unlikely there exists a mathematical concise
answer, relegating our best answer to Monte Carlo methods and direct experimentation.

IV. CONCLUSION
In this work, we extend Combinatorial Watermarking analysis to SCER-capable adversaries. We provide a set of receiver
statistics that can be used to detect SCER attacks, provided a limitation on how well an adversary can estimate watermarked
chips and a hard-decision watermark detection strategy. We derive the distributions of the receiver statistics in the presence
of an hard-decision SCER spoofing attack and provide a pathway to design a Combinatorial Watermarking scheme to meet
security requirements in the presence of an SCER-capable adversary. We propose a soft-decision SCER spoofing attack with
an advantage over the hard-decision SCER spoofing attack with Monte Carlo simulation. From this work, a GNSS designer can
approximately predict how well a Combinatorial Watermark is resistant to an SCER adversary.
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A. HARD DECISION TRAJECTORY EQUATION
First, we substitute the probability of errors with their functions of α from Equations (6) (7) and isolate α for both statistics.

E
[
Y spoof

∆ | α
]

= 1 − 2pe|r,α

= 1 − 2 ·
∫ ∞

α

PDFN (−
√

P ,σ2)(y)dy

= 1 − 2 ·
(

1 − CDFN (−
√

P ,σ2)(α)
)

= −1 + 2 · CDFN (−
√

P ,σ2)(α)

= −1 + 2 ·

(
1
2

(
1 + erf

(
α +

√
P

σ
√

2

)))

= erf
(

α +
√

P

σ
√

2

)
α = −

√
P +

√
2σ · erf−1(E [Y∆ | α])

E
[
Y spoof

Σ | α
]

= 1 − 2pe|¬r,α

= 1 − 2 ·
∫ α

∞
PDFN (

√
P ,σ2)(y)dy

= 1 − 2 · CDFN (
√

P ,σ2)(α)

= 1 − 2 ·

(
1
2

(
1 + erf

(
α −

√
P

σ
√

2

)))

= − erf
(

α −
√

P

σ
√

2

)
=

√
P +

√
2σ · erf−1(−E [YΣ | α])

α =
√

P −
√

2σ · erf−1(E [YΣ | α])

Then, we set the α equal to each other.
√

P −
√

2σ · erf−1(E [YΣ | α]) = −
√

P +
√

2σ · erf−1(E [Y∆ | α])
√

2σ · erf−1(E [YΣ | α]) +
√

2σ · erf−1(E [Y∆ | α]) = 2
√

P

erf−1(E [YΣ | α]) + erf−1(E [Y∆ | α]) =
√

2P/σ2

erf−1(E [YΣ | α]) + erf−1(E [Y∆ | α]) =
√

2SNRSCER

Note that the SNR here is the SNR of the SCER adversary, which is a function of the adversary’s radio equipment.
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