
MPC Control of Multiple Quadcopters Cooperatively Lifting an Object

Raghav Anand, Jason Anderson, Rachel Lim, Rohan Sinha

Abstract— In this project, we use Model Predictive Control
(“MPC”) methods to direct and control a team of three Unmanned
Aerial Vehicles (each, a “drone”) in Robot Operating System
(“ROS”) simulation to lift a box using tensile ropes, modeled as
a spring-damper connection, extended from each drone center of
mass. The drones follow planned trajectories and use on-board state
estimation to reject the disturbance force from the box. Drone
delivery systems, typically for the last-mile or short warehouse
trips, are becoming an increasingly popular research topic in
advanced control. They can provide superior capability over tra-
ditional transportation methods such as trucks and reduce human
operator requirements, among other transportation costs associated
with ground-based travel. Performing the complex maneuvering
in the transportation method requires solving computationally-
heavy problems in perception, planning and control, only recently
achievable on small embedded systems in real-time. In this paper, we
provide a simulation-based modelling approach to the problem. A
video of our project can be found here: https://tinyurl.com/ybkfdj76.
All code is publicly available at [1].

I. INTRODUCTION

Due to quadcopters’ agile and mechanically simple nature, they
are often the subject of recent research regarding cooperative
tasks. In this paper, we discuss using quadcopters to cooperatively
achieve a lifting task one quadcopter could not complete. We
present a cooperative Model Predictive Control (“MPC”) method
to control multiple drones to move an object suspended between
them with spring-damper ropes. The lifted object state and the
presence of other drones is not known to each drone MPC
controller. The affect of the lifted object is accounted in the MPC
through an MPC disturbance rejection augmentation and state
estimation. Therefore, the drone is not able to make predictions
of how other drone’s will affect the hanging mass. The drones,
the lifted object, and the controllers were implemented and
tested using a non-linear multi-body simulator built with Robotic
Operating System (“ROS”). Applications of our method include
aerial last-mile delivery systems of massive objects and craning
or lifting heavy objects in airspace-only accessible places.

II. MODEL

For notation, see the Appendix.

Fig. 1. Drone Coordinate Frame

A. Non-linear Drone Model

The control system is tested using a non-linear dynamics
simulator, where orientations are transformed from Euler angles
to quaternions to avoid gimbal locking. Forces and moments from
the rotors are transformed from the body coordinate frame to
the global one, after which the dynamics are advanced using a
forward Euler discretization using a fixed timestep. The nonlinear
dynamics equations in the global coordinate frame are given by:

d

dt

xy
z

 =

vxvy
vz

 , d

dt

θxθy
θz

 =

ωx

ωy

ωz

 = ω

d

dt

vxvy
vz

 =

 0
0
−g

+ Fext + R(θx, θy, θz)

 0
0∑4

i=1 Fi

 (1)

d

dt

ωx

ωy

ωz

 = R(θx, θy, θz)(J−1(M− ω × (Jω))) (2)

Here R(θx, θy, θz) is the 3D rotation matrix parametrized by the
orientation of the drone. Fext denotes a general external force,
in this case as a result of tension forces acting on the drone from
the box. M is the resulting moment from the rotor forces and
reaction torques, given by:

M =

 0
0

k(
∑4

i=1(−1)i−1Fi)

+

 4∑
i=1

Si ×

 0
0
Fi

 (3)

(4)

S1 =

 ll
0

 ,S2 =

 l
−l
0

 ,S3 =

−l−l
0

 ,S4 =

−ll
0

The simulation assumes a ground plane exists at z = 0, and
as such the drone dynamics are floored whenever the drone is
stationary on the ground.

B. Linearized Discrete Drone Model

We derive a linear model suitable for MPC control according to
the method provided by Mueller [5], which linearizes the system
assuming small θx and θy . Equation (5) provides the continuous
time form of the dynamics.

d

dt

xy
z

 =

vxvy
vz

 d

dt

θxθy
θz

 =

ωx

ωy

ωz

 (5)

d

dt

vxvy
vz

 =

 θyg
−θxg
−g

+

 0
0

1
m

∑
Fi

d

dt

ωx

ωy

ωz

 = J−1

 l −l −l l
−l −l l l
κ −κ κ −κ

F1

F2

F3

F4

This linear model matches the non-linear formulations best when
the drone is in a steady-state level hover. To create the full
continuous dynamic system, we create the appropriate block
matrices Ac and Bc that correspond to the standard control law

with the state vectors of Equation (6). The subscript c denotes
the continuous form.

dx

dt
= Acx +Bcu + bg−c

x =

x
y
z
vx
vy
vz
θx
θy
θz
ωx

ωy

ωz

u =

F1

F2

F3

F4

 bg−c =

0
0
0
0
0
−g
0
0
0
0
0
0

(6)

The discrete forms of these equations are calculated using a
forward Euler difference equation, given below.

A = I +Ac∆t (7)
B = Bc∆t (8)
bg = bg−c∆t

Equation (9) provides the final linearized difference dynamics for
the drone, where t denotes the time index.

xt+1 = Axt +Btut + bg (9)

C. Linearized Model Mismatch

To benchmark the accuracy of the linearized model, a test
control sequence (obtained by solving a CFTOC problem) is
simulated using both the linearized an non-linear model from
the same initial conditions with a timestep of .1 seconds over a 3
second period. Figure 2 shows that as long as the yaw and pitch
of the drone are constrained to be small, the deviation between
the linear and non-linear model is small, so the approximations
are valid.

Fig. 2. Trajectory Comparisons of the nonlinear and linearized models.

D. Box Model

The box model treats the ropes as springs which exert an
external force on the drones as they move away from the box.
For each drone, the spring force acting on the box is found by
Equation (10), where (xB , yB , zB) is the box position, l0 the
unstretched spring length, k is the spring constant, and (x,y,z) is
the position of the connected drone center of mass. The external
forces with respect to the drone are then given by Equation (11),

and the total forces on the box can be found by Equation (12)
where Fg = −mg is the force of gravity and c is the damping
constant. k and c are chosen such that the ropes are critically
damped, mimicking the elasticity of a real rope.

li =

xByB
xB

−
xidroneyidrone
zidrone

F i
s = −k ∗ (||li|| − l0) ∗ li

||li||
− c(vbox − vidrone) (10)

F i
ext = −F i

s (11)

F = Fg +

4∑
i=1

F i
s (12)

F i
s is set to zero whenever li < l0 as a rope can only exert forces

when in tension.

III. MPC CONTROL

We incorporate the linearized discrete dynamic model of
the drone of Section II-B into the standard MPC formulation
provided in Equation (13) [2].

min
∀xt ∀ut

xnPx
>
n +

n−1∑
t=0

xtQx>t + utRu
>
t (13)

s.t. xt+1 = Axt +But + bg ∀t ∈ [0 . . . n− 1]

x0 = x0

xt ∈ X ∀t ∈ [1 . . . n]

ut ∈ U ∀t ∈ [0 . . . n− 1]

A. State and Input Constraints

From Equation (13), X is set to restrict each of the lateral
angular positions to within 15◦ of zero and each of the lateral
angular velocities to within 10◦ per second of zero. This ensured
that the drone never ventured too far away from the small-angle
assumptions of the linearized model of Section II-B, and that the
drone wouldn’t spin out of control. No other constraints were
made to ensure efficient MPC solving time.

B. Disturbance Rejection

To account for disturbances from the drone environment, we
assume that all disturbances are described completely by a 3-state
disturbance force vector. This vector is appended to Equation (9)
into Equation (14) and implemented into the MPC formulation
of Equation (13).

xt+1 = Axt +But + bg +BdFd (14)

The matrix Bd maps Fd to the appropriate velocity states in x
while incorporating the affect of m and ∆t.

C. Disturbance State Observation

We incorporate a disturbance force observer into the MPC
code. This observer works according to Equation (15), derived
from Borrelli[3].[

x̂t+1

d̂t+1

]
=

[
A Bd

0 I3

] [
x̂t

d̂t

]
+

[
B
0

]
u +

[
bg
0

]
− L(x̂t − xt) (15)

From Equation (15), d̂ is the 3-vector concatenation of the
estimated disturbance forces in the x, y, and z directions, and x̂ is
an estimated state. We calculate x̂ separately from the simulated
state so that the state estimator is ready for hardware implemen-

tation. The matrix L provides
[
A Bd

0 I3

]
− LC eigenvalues with

satisfactory disturbance state convergence, where C = [I12 0].
Through a small amount of trial and error, we found these
eigenvalues to be [93,94,...,107]

130 .

D. Tracking with Disturbance

To achieve disturbance rejection, we apply the augmentation
procedure provided by Borrelli[3] on the dynamics to solve
the appropriate set of equilibrium states that track a reference
with the disturbance forces. The tracking position coordinates
are denoted x∞, y∞, z∞, and the corresponding equilibrium
states are denoted x∞ and u∞. Here, the tracking is restricted to
position only, as the drone may need to change its orientation
to compensate for disturbance. We solve for the appropriate
equilibrium states by the optimization problem of Equation (16).

min
x∞ u∞

u∞Ru
>
∞

[
A− I B
I3 0

] [
x∞
u∞

]
=

−BdFd − bg

x∞
y∞
z∞

 (16)

Because the constraints of Equation (16) form an under deter-
mined linear system, it must be formulated as an optimization
problem with the equations as constraints. Here, the cost is a
function of the forces, in order to minimize the drone power
required. From the calculated x∞ and u∞, we modify the MPC
formulation to attribute costs to deviations from x∞ and u∞.

E. Final MPC

In our simulation, the state of the drone is perfectly known at
each iteration time step and the simulator, controller, and distur-
bance estimator run at the same frequency. At each simulation
iteration, we solve the final MPC problem of Equation (17) using
the previous iteration’s state and estimated disturbance, x−1 and
d̂−1. In the MPC problem, the disturbance d̂−1 is assumed
constant, but it is still updated with each MPC iteration. After
calculating the final MPC problem solution, u0 is actuated by
the drone through the simulator.

min
∀xt ∀ut

(xn − x∞)P (xn − x∞)>n

+

n−1∑
t=1

(xt − x∞)Q(xt − x∞)>t

+

n−1∑
t=0

(ut − u∞)R(u− u∞)>t (17)

s.t. xt+1 = Axt +But + bg +Bdd̂−1 ∀t ∈ [0 . . . n− 1]

x0 = x−1

xt ∈ X ∀t ∈ [1 . . . n]

ut ∈ U ∀t ∈ [0 . . . n− 1]

IV. MOTION PLANNING

The MPC strategy from the previous section can accurately
track a reference position subject to external forces from the
box. However, the algorithm assumes no knowledge of the other
drones, first, because the drones might not be able to communi-
cate with each other in an application, and second, so that new
drones can attach themselves during the control task without
changing the problem formulation. Instead, a separate motion
planner takes in high level destination commands from a user and
generates reference targets for each drone in the configuration
ensuring the drones stay at a fixed distance from each other.
The motion planner dynamically regulates the reference state for
each drone based on its current position, providing the next way-
point when each drone has reached its reference. The simpler
the trajectories, the sparser the references can be, simulating a
cooperative decentralized strategy for the drones.

V. SIMULATOR

A. ROS and Python

We implemented our formulations using ROS, a middle-
ware system widely used to facilitate modular simulation and
development of complex robotics projects. Our simulator is able
to simulate any number of drones in closed loop, with or without
a box and can be used to develop other control architectures in
the future.

Simulations of reference tracking, disturbance rejection and
box were implemented and tested in the ROS framework. All of
our code is written in Python. We used CVXPY [4] for all the
required optimization.

We used ROS’s RViz, a built-in ROS package to create a
vizualizer for the simulations. The visualization script first finds
all the drones and the box in the simulation. It then plots their
current position, future waypoints and previous trajectories in a
3D space.

VI. RESULTS

Figure 3 shows the visualization of 3 drones the box to
different waypoints. In simulation, the drones and the box started
of on the ground, lifted up, and then followed a path set out by
the motion planner. As the figure shows, the drones are able
to effectively adapt to the disturbance force from the box and
maintain their reference trajectory. In the simulation, the initial
disturbance estimate was set to zero. As is visible from the figure,
the drones are pulled towards each other when the ropes to the
boxes reach tension, but the estimator measures the disturbance
well enough for the drones to compensate well before a collision
occurs. With or without the box, the drones are able to achieve
accurate reference tracking. With the box, it is notable that the
pulling of one drone on the box does not seem to be amplified
by the control actions from any of the other drones. Since the
lifting configurations are highly symmetrical, the drones achieve
a stable equilibrium coupled to each other, each carrying a third
of the load. Benchmarking the lifting of the box to the trajectory
tracking without the box does not show significant impact on
performance. We recorded videos of the simulations with and
without the box, and they are available at link in the abstract.

Fig. 3. Trajectories of 3 drones carrying a box. Notice that the drones are pulled
into each other when the connections reach full extension.

VII. CONCLUSION AND FUTURE WORK

We have presented a control framework for the cooperative
lifting of objects with multiple quadcopters. The most significant
result of this work is the accurate real-time estimate of the
disturbance force induced by the hanging object. A disturbance
rejecting MPC design will be able to lift an object in the
presence of multiple other agents in a stable configuration.

The entire control problem does not need to be solved in a
centralized fashion, optimizing over the control inputs of all
drones simultaneously, nor will a decentralized strategy need to
predict future actions of the other agents. The motion planner
does not need to distinguish between a task where the drones are
lifting the box, or performing simple point to point navigation.
Future work could include allowing the drones to know about the
agents and dynamically plan their paths to optimize the trajectory
of the lifted object. All authors contributed equally to this work.

REFERENCES

[1] https://www.github.com/GoldeneyeRohan/Multi Drone Control.
[2] Francesco Borrelli. Model predictive control algorithm, feasibility and

stability. University of California, Berkeley, Department of Mechanical
Engineering, ME 231A: Experimental Control Design I.

[3] Francesco Borrelli. Mpc: Tracking, soft constraints, move-blocking. Uni-
versity of California, Berkeley, Department of Mechanical Engineering, ME
231A: Experimental Control Design I.

[4] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research,
17(83):1–5, 2016.

[5] Mark Mueller. Quadcopter dynamics. University of California, Berkeley,
Department of Mechanical Engineering, ME 136: Introduction to Control of
Unmanned Aerial Vehicles.

APPENDIX

In this paper, x, y, z, correspond to the Cartesian position
state where x and y are the lateral coordinates with x generally
meaning forward and z meaning upward, and x, y, and z
forming a right-hand coordinate system. The velocities in the
corresponding coordinate axes are denoted vx, vy , vz; the Euler
angle positions, θx, θy , θz ; and the Euler angle velocities, ωx,
ωy , ωz . For any states with respect to the body frame of the drone
(centered at the drone center of mass with the aforementioned
directional definitions) have the super script B, whereas, with no
superscript, the states are global. A concatenates state vector is in
bold, for example, x and u, which are defined later in Equation
(6). The diagonal matrix, J , contains three elements that are the
three moments of inertia of the xB , yB , and zB axes of the
drone. The drone mass is m; κ proportionally relates the force
of a drone propeller to the moment induced on the drone. If the
drone were a square aligned with the xB and yB axes with the
four propeller centers at the square corners, the side length of
the square is 2l. The length of time in between iterations is ∆t,
either in the simulator or in the controller. The iteration number
of a specific state is denoted with a subscript, with x0 being the
x position at present.

