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I. INTRODUCTION

Autonomous Unmanned Aerial Vehicles (UAVs) are becom-
ing increasingly prevalent in our skies, a trend that will further
accelerate as delivery-rotorcraft and urban air transport be-
come ubiquitous. Ample literature exists on Model Predictive
Control (MPC) applied to UAV systems; however, in this work,
we focus on the challenging problem of controller robustness.
Specifically, how do we ensure collision free trajectories of a
quadrotor in an urban environment where there is a high risk
of encountering obstacles?

Previously, controller robustness in MPC has been addressed
with Robust MPC (RMPC) or Stochastic MPC (SMPC).
RMPC preserves controller stability and performance for
each possible realization of uncertain parameters. Although
RMPC has shown encouraging results on systems that cannot
transgress stability constraints, it is overly conservative and
computationally complex. It accounts for the worst-case sys-
tem parameters, even if highly improbable. These limitations
impede RMPC’s application to UAVs given the constraints
on battery life, flight time, and computational power. Unlike
RMPC, SMPC models uncertainty parameters with probabilis-
tic distributions and minimizes an expected cost. Relaxing
hard constraints into probabilistic constraints makes SMPC
less conservative than RMPC; however, knowledge of the
disturbance model a priori may be challenging to obtain.

Contingency MPC (CMPC) overcomes the limitations of
RMPC and SMPC by anticipating potential emergencies rather
than reacting when they occur [1]. CMPC separates nominal
and contingency planning into separate horizons, each with a
unique cost function and constraints. The nominal trajectory
tracks a desired path and includes considerations for smooth-
ness and efficiency. The additional contingency trajectory is
considered to handle potential dangerous events. Alsterda,
et al., apply CMPC to an autonomous car that must safely
navigate a potentially icy road. The controller selects the
optimal control input accounting for both the nominal and the
icy road conditions, thereby ensuring a trajectory that works
for both situations simultaneously.

In this work, we apply CMPC to autonomous quadrotors
that must safely avoid collision with other quadrotors. The
contingency horizon enforces obstacle avoidance constraints
given an assumed behavior of the other quadrotors. Our
contributions include the following.

1) We use CMPC to enact collision avoidance for a quadro-
tor through dynamic constraints;

2) We build a CMPC simulator in Matlab with YALMIP
[2];

3) We propose and implement constraint horizon scaling
to ensure the optimization problem remains feasible
between time steps; and,

4) We experimentally verify our framework for different
plausible adversarial scenarios. We consider cases where
the obstacle collides with our agent given no trajectory
modification or when the obstacle is actively seeking to
collide.

II. RELATED WORK

Learning-based MPC was explored by Bouffard et al.,
wherein physically based updates were used to improve tran-
sient response [3]. However, the controller was designed for a
specific task of catching a ball with a known trajectory. Hu et
al., implemented tube MPC, a variant of RMPC for a 10-state
quadrotor model [4]. Along similar lines, a tube based MPC
was used in [5] to stabilize quadrotor’s horizontal dynamics.
Although the model accounts for additive disturbances in
terms of bounded sets, it is not experimentally verified with
static or dynamic obstacles. Obstacle avoidance in an MPC
framework was explored in the work of Garimella et al., [6].
The authors combine an online model for parameter identifi-
cation with an ellipsoidal penetration to demarcate the safety
region around obstacles. The work shows robust behaviour
for obstacle avoidance but only considers static obstacles, all
modeled as cylinders. Static obstacles were also considered in
Nascimento’s et al., nonlinear MPC formulation for a quad
rotor in a 3D unknown environment [7]. A sensor obtains the
relative obstacle position and a constraint generator computes
polyhedras by adding safety margin to the obstacles.

The main limitation of these approaches is that the robust
MPC controllers either do not include obstacle avoidance or
have been experimentally verified with only static obstacles.
We now discuss several works that have accounted for moving
obstacles either through an added cost function or through
explicit dynamic constraints. Gros et al., represented obstacles
as balls at pre-defined positions with known radii [8] and mod-
elled non-convex avoidance constraints with slack variables. In
[9], a collision avoidance cost is designed based on the squared
distance between the quad rotor and the obstacle. Along
similar lines, in [10] a potential term is constructed as the
summation of the inverse distance between the quad rotor and
multiple nearest obstacles. A limitation of cost-function based
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approaches is that they are often excessively conservative
due to over approximating the unsafe region. Furthermore
significant effort may be required in hyper-parameter tuning
to balance obstacle avoidance with goal seeking. This negates
a key advantage of CMPC, namely the separation of nominal
trajectory considerations from emergency maneuvers. Hence,
we opt to use a constraints-based approach as described in the
following section.

III. PROBLEM FORMULATION

A. CMPC Mathematical Formulation

CMPC uses at least two parallel prediction horizons within
the standard MPC problem. The different prediction horizons
account for each contingency plan; however, the first control
input of each plan is constrained to be same.

Consider the rudimentary scenario where a controller must
plan for a nominal scenario and one contingency scenario.
Let n designate the nominal plan, and let c designate the
contingency plan. As with the typical MPC nomenclature, let
jt(·, ·) denote the stage cost at time t; xt the state at time t;
ut, the control input at time t, f(·, ·), the one-step dynamics
function; X , the permissible state-space set; U , the permissible
control set; and x0, the current estimate of the state. Equations
(1) through (6) provide the CMPC formulation. Note Equation
(6), which constrains the control input of both scenarios to be
equal.
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Like standard MPC, the first control input is applied to the
system and the problem is then re-solved.

B. Objective Function and Constraints

We assume a fixed goal which is included in the cost
function at every time step. The goal is specified as a desired
state and control. The objective function is a standard quadratic
cost formulation. Constraints include upper and lower bounds
on the state and the control input, the dynamics as given by
Equation (2), and collision avoidance constraints described in
the next section.

C. Collision Avoidance Formulation

We leave advanced geometric formulations such as poly-
topes and zonotopes [11][12] for future work.

Obstacles are modelled as spheres with known constant
radii. A safety region envelopes the obstacle to provide an
avoidance margin. The obstacle-avoidance constraint is for-
mulated in Equation (7), where p(·) denotes the obstacle o ’s

position at time t; t is the time within the MPC problem; rt
is the obstacle size and s is the safety margin at time t.

||p(xt)− p(xot )||1 ≥ rt + s (7)

Including collision avoidance constraints makes the MPC
problem non-convex. Such problems can be handled by using
a branch-and-bound optimizer that calls a quadratic program
solver.

During simulation, the collision avoidance constraints are
frequently active since the controller greedily minimizes the
cost. This leads to the quadrotor occasionally entering the
avoidance regions, due to plant-controller-model mismatch,
making an infeasible problem mid-experiment. We refrain
from using soft constraints as the MPC problem would no
longer be a branch-and-bound quadratic program, leading to
long computation times. Therefore, in our formulation, we
allow the radius rt to grow within the MPC time horizon
so that the quadrotor perceives a smaller obstacle at the next
MPC step. We let the radius vary as rt = γt r0 where r0
is the initial obstacle radius and γ = 1.1. We found that γ
ensured that the quadrotor never entered an infeasible region
between time steps in our experiments. To find the minimum
constraint-satisfaction safety, we suggest one enforce that the
one-step control reachability set from the current position be
constrained to lie outside the obstacle avoidance region.

D. Quadrotor Plant and Control Dynamics

To model quadrotor dynamics as a plant, we implemented
the second-order accurate model as described here [13]. Within
the controllers, we used the linearized-about-hover dynamics
as described here [14].

IV. EXPERIMENTAL RESULTS

A. Setup

We investigate the performance of CMPC applied for col-
lision avoidance through numerical experiments in Matlab.
The control problems are assembled with YALMIP [2], while
IMB’s CPLEX 12.1 branch-and-bound quadratic program
solver performs the optimizations. The controller and simu-
lation run at 10 Hz.

To focus on collision avoidance performance and isolate
tuning effects, we maintain identical MPC horizons in all
experiments and only modify the constraints regarding col-
lision avoidance. Each controller tested uses the following
common parameters within its trajectory optimizations: 30 0.1
second steps, identity tuning, identical linearized quadrotor
dynamic constraints, total thrust limited to four times the total
weight, and identical non-active state constraints. Therefore,
the only difference between the MPC controller and the CMPC
controller is that the CMPC controller includes an additional
horizon with the corresponding obstacle related constraints.

In the following sections, each scenario involves two
quadrotors: (1) a test quadrotor whose controller performance
is evaluated and (2) an adversarial quadrotor on a potential
collision course. The test quadrotor controller models the other
quadrotor as a moving obstacle with assumed behavior. The



controller can make one of the two following assumptions
about the other quadrotor’s behavior. The first is that the other
quadrotor maintains a constant velocity within the MPC hori-
zon. At each time step, the test quadrotor controller observes
the other quadrotor’s current position and velocity. The second
is that the other quadrotor is ballistically attempting to collide
with the test quadrotor at a maximum speed.

B. Constant-Velocity Intercept Contingency

We create two test scenarios. In the first scenario, the
test quadrotor moves from (0, 0, 0) to (2, 2, 0) while the
other quadrotor moves from (2, 2, 0) to (0, 0, 0). Without an
avoidance strategy, the two will collide. In the second scenario,
the other quadrotor diverts to (0, 0,−1) at time t = 1. Without
an avoidance strategy, the two will not collide. For both
scenarios, we compare the performance of two controllers:
(1) an MPC controller that assumes the other quadrotor will
maintain a constant velocity through the MPC horizon and (2)
a CMPC controller with two contingency horizons: (A) one
assuming no other quadrotor present and (B) one assuming the
other quadrotor will maintain a constant velocity through the
MPC horizon. The CMPC controller continges the presence
of the other quadrotor, as opposed to assuming the presence
of the other quadrotor; hence, we expect to observe better
control performance both when the other quadrotor follows a
collision-course and when it diverts.

Figure 1 provides the complete 4-second trajectory of both
controllers in the presence of a collision-course drone. Figure
2 provides the complete 4-second trajectory of both controllers
in the presence of a collision-course drone that diverts at
1 second. The CMPC controller provides a less-perturbed
trajectory for both scenarios. Moreover, the CMPC controller
causes the test quadrotor to arrive at its goal state faster, as
illustrated by the evenly-temporally-spaced dots.

In these tests, we claim that CMPC exploits two cost-
reducing measures to provide the superior performance ob-
served. First, CMPC defers acting on the less-ideal (cost
increasing) contingency until the last possible moment it can
still safely be managed. The difference between the nominal
and collision avoidance trajectories encodes uncertainty about
whether the other drone will divert. This uncertainty enables
the controller to greedily act on the more fortuitous contin-
gency (that it will divert), until it is no longer safe to do so.
This is observed as a delay in the diversion of the CMPC
controlled quadrotor from the direct path to its goal. Secondly,
because CMPC expressively incorporates the nominal trajec-
tory, the controller is ready to exploit the nominal case when
the contingency does not happen.

C. Ballistic Adversarial quadrotor Contingency

We create two additional scenarios, where the other quadro-
tor is potentially ballistic. In both scenarios, the test quadrotor
attempts to maintain the position (1, 1, 0). In the first case, the
adversary quadrotor moves from (2, 0, 0) to (0, 0, 0) whereas
in the second scenario, it tries to collide with the test quadrotor.

Fig. 1. Comparison results of vanilla MPC (top) and CMPC (bottom) from
Section IV-B for the first 4 seconds in the presence of a quadrotor that does
not divert. Each of the dots represents 0.1 seconds of movement. Notice that
the CMPC trajectory is less perturbed and arrives at the goal state earlier.

For each scenario, we compare the performance of two
controllers for the test quadrotor: (1) an MPC controller that
assumes the adversary quadrotor is attempting to collide and
(2) a CMPC controller with two contingency horizons: (A) one
assuming no other quadrotor present and (B) one that assumes
an adversarial quadrotor is attempting to collide with the
test quadrotor. The CMPC controller continges on a ballistic
adversarial quadrotor, as opposed to assuming a ballistic
adversarial quadrotor; hence, we expect better performance of
the CMPC controller in the presence of both a non-ballistic
and a ballistic adversary.

Figure 3 provides the complete 20-second trajectory of both
controllers in the presence of a non-ballistic quadrotor. Clearly,



Fig. 2. Comparison results of vanilla MPC (top) and CMPC (bottom) from
Section IV-B for the first 4 seconds in the presence of a quadrotor that diverts
at 1 second. Each of the dots represents 0.1 seconds of movement. Notice
that the CMPC trajectory is less perturbed and arrives at the goal state earlier.

the CMPC controller better handles the situation without the
contingency occurring. Figure 4 provides the complete 20-
second trajectory of both controllers in the presence of a
ballistic quadrotor. The CMPC controller outperforms MPC
as it keeps the test quadrotor closer to the goal, even in
the presence of a ballistic quadroor. Moreover, the CMPC
trajectory’s average deviation from the goal is smaller and the
test quadrotor manages to cross its goal state multiple times.

In this test, like the test from Section IV-B, the CMPC
controller is immediately ready to exploit the nominal case
cost if the contingency does not occur; hence, the observed
performance increase when the other quadrotor is not ballistic.
Moreover, the CMPC controller performs better in the ballistic

Fig. 3. Comparison results of MPC (top) and CMPC (bottom) from Section
IV-C for the first 20 seconds in the presence of a non-ballistic quadrotor.
The CMPC controller is better able to keep the quadrotor at its goal position
without the presence of the ballistic quadrotor contigency scenario.

scenario given the extra emphasis on following the nominal
scenario.

D. Comparing the Obstacle Behavior Modeling

Figure 5 compares how the CMPC controller accounts for
the two obstacle behaviors modelled. In this experiment, the
test quadrotor attempts to maintain a position of (1, 0, 0).
The other quadrotor moves from (2, 0, 0) to (0, 0, 0). With
a constant velocity contingency, the test quadrotor returns to
a stationary position after moving itself out of the path of
the other quadrotor. With a ballistic contingency, the quadro-
tor returns to its original position, but does not consider a



Fig. 4. Comparison results of MPC (top) and CMPC (bottom) from Section
IV-C for the first 20 seconds in the presence of a ballistic quadrotor. The
quadrotor trajectories fall within a plane, so the view angle is adjusted to be
perpendicular to that plane to show maximum trajectory spread. The CMPC
controller trajectory spread is smaller, and its quadrotor is able to cross its
goal point multiple times.

stationary hover safe, so it completes loops that contain its
original position. In this looping trajectory, the test quadrotor
maintains a safe state from which it can react if the other
quadrotor becomes ballistic.

V. CONCLUSION

CMPC performed better than MPC in our experiments.
However, we do not provide any provable, generalizable
claims regarding performance, feasibility, and stability. Natural
extensions for our work include considering a more realistic
formulation of obstacle avoidance using state-estimation, co-

Fig. 5. Comparison results of CMPC controller assuming a constant-velocity
quadrotor obstacle (top) and assuming a ballistic quadrotor obstacle (bottom).

operative multi-agent systems, using more than two contin-
gency scenarios and employing different dynamics and cost
functions for the nominal and contingency horizons. Further-
more, we suggest investigating scenarios where the optimal
nominal and contingency horizons are opposites, potentially
resulting in a net zero control. Including HJB reachability
analysis in our framework is of key interest as well.
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